Building a Prediction Model for Postoperative Acute Kidney Injury using Machine Learning: The CMC-AKIX Model

Jin Ah Park¹, Sang Hun Eum¹, Seok Joon Shin¹, Ji Won Min², Hye Eun Yoon¹

¹Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea ²Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, Catholic University of Korea

BACKGROUND

- Acute kidney injury (AKI) is a common complication that affects up to 5-7.5% of total admitted patients and 20% of patients in the intensive care unit (ICU). AKI is associated with increased morbidity and in-hospital mortality.
- Among AKI of admitted patients, postoperative AKI affects up to 40%.
- There are many factors associated with postoperative AKI.
- Several risk scoring tools for postoperative AKI have been described.
- However, their limitations are heterogeneity of the study population, inclusion of a small number of centers, and lack of external validation.

AIMS

The aim of this study was to build a risk prediction model for postoperative AKI using machine learning methods from a multicenter cohort.

METHODS AND MATERIALS

Design : Retrospective cohort study using data extracted from CMC-CDW (the Catholic Medical Center-Clinical Data Warehouse).

Patients : Adult patients who underwent general anesthesia surgery from 1st March 2009 to 31st December 2019 at 7 hospitals of the Catholic University of Korea. **Definition of Postoperative AKI**

- AKI within 30 days after surgery using the KDIGO criteria:
- Increase of serum creatinine at least 1.5 times the baseline value or
- Initiation of renal replacement therapy within 30 days of the postoperative period

Primary Outcomes : AKI within 30 days after surgery

Data Collection : Data was extracted from the Catholic Medical Center-Clinical Data Warehouse (CMC-CDW)

Models

Model 1 (40 variables)	 Basic: Age, Sex, Systolic blood pressure, Diastolic blood pressure, Body mass index, Underlying: Chronic kidney disease, Diabetes mellitus, Hypertension, Cerebrovascular disease, Coronary artery disease, Chronic obstructive pulmonary disease, Liver cirrhosis, Operation: Emergency operation, Operation duration, Medication: ACEi or ARB usage, NSAIDs usage, Laboratory: eGFR, Blood levels of creatinine, Total protein, Albumin, AST, ALT, Urea nitrogen, Sodium, Potassium, Chloride, Calcium, Creatine phosphokinase, Lactic dehydrogenase, C-reactive protein, Glucose, Hemoglobin, Hematocrit, and White blood cell count, Urine specific gravity and Urine protein
Model 2 (11 variables)	Basic : Age, Sex, Underlying : Diabetes mellitus, Operation : Emergency operation, Operation duration, Medication : ACEi or ARB usage, Laboratory : Blood levels of albumin, Hemoglobin, and Sodium, eGFR and Urine protein
Model 3 (14 variables)	Basic : Age, Sex, Systolic blood pressure, Diastolic blood pressure, Operation : Operation duration, Laboratory : eGFR, Blood levels of creatinine, Albumin, Sodium, Potassium, Chloride, Glucose, and Lactic dehydrogenase and Urine protein

Statistics

- Machine learning analysis was performed using Python version 3.8.5.
- Models applied were Light gradient boosting machine (LGBM), logistic regression, decision tree, random forest, Light gradient boosting machine (LGBM), Naïve Bayes and deep neural networks (DNN).
- Model performance was measured by area under the curve (AUC) of the receiveroperating characteristic (ROC), accuracy, precision, specificity, recall and F1 score.

RESULTS

- The 6 different statistical analysis methods were run on various combinations of 40 independent preoperative predictors that we had selected.
- Model 1 included all 40 preoperative variables and surgical characteristics; DNN (AUC = 0.821) and light GBM (AUC = 0.823) demonstrated the best prediction performance.
- **Model 2** included 11 variables from the SPARK (Simple Postoperative AKI Risk) classification; DNN showed the highest performance (AUC = 0.806).
- Model 3 included variables that were found significant on multivariable analysis; DNN also showed the highest performance (AUC = 0.807).

Table 1. Performance metrics of postoperative AKI prediction models.

Analysis	Model	AUC	Accuracy	Precision	Specificity	F1 score
	1	0.821	0.955	0.375	0.998	0.041
DNN	2	0.806	0.966	0.407	0.999	0.021
	3	0.807	0.955	0.380	0.999	0.032
Lasiatia	1	0.811	0.955	0.363	0.998	0.054
Logistic	2	0.784	0.966	0.333	1.000	0.007
Regression	3	0.802	0.955	0.310	0.998	0.043
	1	0.672	0.956	0	1.000	0
Decision Tree	2	0.666	0.967	0	1.000	0
	3	0.672	0.956	0	1.000	0
	1	0.803	0.956	0.571	1.000	0.007
Random Forest	2	0.767	0.967	0.440	1.000	0.010
	3	0.778	0.956	0.455	1.000	0.009
	1	0.823	0.955	0.360	0.998	0.053
Light GBM	2	0.803	0.966	0.356	1.000	0.014
	3	0.801	0.955	0.328	0.998	0.037
	1	0.780	0.861	0.145	0.881	0.218
Naïve Bayes	2	0.766	0.884	0.112	0.902	0.171
	3	0.782	0.895	0.162	0.921	0.218

Figure 1. ROC curve for prediction of post-op AKI based on Model 1

CONCLUSIONS

- We propose a machine learning-based postoperative AKI prediction tool, the
- We used all 40 variables including individual patients' preoperative characteristics, surgical information and laboratory data.
- This model is a user-friendly online program, and one can use it even all variables

MARCH 29 - APRIL 1 San Diego, California